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Abstract Solutions of three salts (LiBF,, LiNTf,, LiPF¢) in
N-methyl-2-pyrrolidone (NMP), selected arbitrarily as a ref-
erence solvent, were investigated by electrochemical imped-
ance spectroscopy (EIS) and scanning electron microscopy
techniques. The lithium surface in contact with LiPFg in
NMP electrolyte was covered with a protective layer (SEI)
which morphology comprise small particles (of ca. 0.2 pm
in radius). This salt was selected for further studies. The
impedance of the Li|(LiPFs in NMP+additive)|Li system
was measured immediately after cell assembly and after
galvanostatic charging/discharging. Fifteen different addi-
tives (10 wt.%) were used. The efficiency of individual
additives was evaluated in terms of the Li|electrolyte system
resistance (AR) or total cell impedance reduction, both
deduced from EIS. Some of the additives were able to form
the SEI layer and to reduce resistance/impedance of the Li
electrolyte interphase. In such cases, the lithium surface was
covered with relatively uniform conglomerates, or regions
separated by cracks, of ca. 1-2 um in dimension.
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Introduction

Both lithium-metal and lithiated graphite anodes applied in
lithium or Li-ion batteries react with electrolytes with the
formation of a passivation layer, usually called the solid
electrolyte interphase (SEI), protecting them against further

A. Lewandowski (D<) - A. Swiderska-Mocek - L. Waliszewski
Faculty of Chemical Technology,

Poznan University of Technology,

60965 Poznan, Poland

e-mail: andrzej.lewandowski@put.poznan.pl

corrosion [1, 2]. Cyclic carbonates, typically used as com-
ponents (solvents) of lithium electrolytes, react with Li or
CeLi anodes with the formation of Li" conducting SEI
[3-8]. The SEI layer is responsible for the chemical and
electrochemical stability of electrodes. However, SEI form-
ing cyclic carbonates are volatile and hence, the system is
flammable (during overheating, overcharging, or mechani-
cal damage). Therefore, for safety reasons, all components
of a Li-ion battery, including the electrolyte, should be char-
acterised by non-flammability. The non-volatility of room
temperature ionic liquids is important from the point of view
of their possible application as non-flammable electrolytes in
lithium and Li-ion batteries [9—12]. Another approach is to
find a low vapour pressure molecular solvent, for example y-
butyrolactone (y-BL, 7,=205 °C) [13] or tetramethylene
sulfone (TMS, 7,=280 °C) [14]. However, unconventional
systems, such as ionic liquids and high boiling point solvents
(y-BL, TMS) do not form SEI protective layer but rather
resistive corrosion products. Therefore, in non-classical elec-
trolytes additives are necessary to improve Li and Li-ion
battery performance [6, 15]. The general aim of the present
study was to provide visual (scanning electron microscopy,
SEM) and quantitative (electrochemical impedance spectros-
copy, EIS) comparison of additives in an arbitrarily selected
solvent (N-methyl pyrrolidone). The effect of the additive
presence on the Lilelectrolyte impedance may be used as a
measure of its SEI forming properties.

Experimental
Materials

Lithium foil (0.75 mm thick, Aldrich), lithium hexafluoro-
phosphate (LiPF¢, battery grade >99 %, Fluka), vinylene
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carbonate (VC, >97 %, Aldrich), vinyl ethylene carbonate
(VEC, >99 %, Aldrich), ethylene carbonate (EC, anhydrous
99 %, Aldrich), propylene carbonate (PC, anhydrous
99,7 %, Aldrich), dimethyl carbonate (DMC, anhydrous
>99 %, Aldrich), diethyl carbonate (DEC, anhydrous
>99 %, Aldrich), ethylene sulphite (ES, 98 %, Aldrich),
vinyl acetate (Vac, >99 %, Fluka), gamma-butyrolactone
(y-BL, >99 %, Aldrich), triphenyl phosphate (TPhPh,
Aldrich), phenyl isocyanate (PhIsCy, >99 %, Fluka), methyl
cinnamate (MCin, >99 %, Aldrich), dimethyl sulfoxide
(DMSO, Merck), and styrene (>99 %, Aldrich) were used
as received. Electrolyte was obtained by dissolution of the
solid LiPFg salt in N-methyl-2-pyrrolidone (NMP, Fluka)
(1 M solution of LiPF¢ salt in NMP). Electrolytes were
prepared in a dry argon atmosphere in a glove box. They
contained various additives (VC, VEC, EC, PC, DMC,
DEC, ES, Vac, y-BL, TPhPh, PhIsCy, MCin, DMSO,
styrene) at 10 wt.%.

Measurements

The performances of the cells were characterized using
electrochemical impedance spectroscopy (EIS) and using
galvanostatic charge-discharge tests. The Li/electrolyte/Li
cells were assembled in a dry argon atmosphere in a glove
box. Two lithium foils were separated by the glass micro-
fibre GF/A separator (Whatman), placed in an adopted 0.5"
Swagelok® connecting tube. Interface resistance at the elec-
trode/electrolyte interphase was measured using an ac im-
pedance analyzer (Atlas—Sollich system, Poland). The Li/
electrolyte/Li cells were polarised with a constant current
(1 mA) for 45 min and for the next 45 min in the opposite
direction. Scanning electron microscopy (SEM) of the lith-
ium electrode was performed with the Tescan Vega 5153
apparatus. After electrochemical measurements, cells were
disassembled, electrodes washed with DMC and dried in
vacuum at room temperature. All operations were per-
formed in a dry argon atmosphere in a glove box.

Results
Salt effect

Figure 1 shows impedance spectra of the LiNMP+LiX|Li
system (LiX=LiBF,, LiNTf,, LiPF4) taken immediately
after the cell assembling and after its galvanostatic charg-
ing/discharging. In the case of all salts, the impedance of the
system increased after the electrochemical SEI formation.
The impedance of the fresh system (without galvanostatic
polarisation) may be interpreted as a result of lithium reac-
tion with the electrolyte (solvent and salt) with the formation
of a passivation layer. The highest impedance is characteristic
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Fig. 1 Impedance spectra of the LiNMP + LiX|Li system taken
immediately after cell assembling (A) and after its galvanostatic charg-
ing/discharging (o). Current, | mA cm 2, charging/discharging time,
45 min. LiX stands for LiBF,, LiINTf, or LiPF¢

of the Li|(LiBF, in NMP) system (of the order of 600 (2
referred to 1 cm? of the lithium geometrical surface area). In
the case of the solutions of the other salts (LiNTf, or LiPF), it
is lower (ca. 400 and 200 €2, respectively). During the elec-
trochemical charging/discharging, the passivation layer is
modified as a result of (1) the thickness, (2) composition (solid
lithium salts and polymers), (3) and morphology changes. As
a result of the lithium/electrolyte interphase modification, the
total resistance (impedance) also changes. In the case of LiBF,
and LiPFg salts, the total impedance increases by ca. 100 %.
The corresponding value for LiNTf, salt is much smaller.
SEM images of lithium metal surface covered with corrosion
products after a chemical reaction with the NMP+LiX elec-
trolyte (without electrochemical charging/discharging) are
shown in Fig. 2. It can be seen that metallic lithium, after its
contact with NMP solutions of LiBF, and LiNTHf, salts, reacts
with the formation of a uniform passivation film. In the case of
the LiPF in NMP electrolyte, the lithium surface is covered
with small particles (of ca. 0.2 um in radius). This may
suggest that in the case of Li|(LiPFs in NMP), the specific
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a)

Fig. 2 SEM images of lithium metal surface covered with corrosion
products after chemical reaction with NMP + LiX electrolyte (without
electrochemical charging/discharging) (a) NMP + 1 M LiBFy; (b)
NMP + 1 M LiNTf, and (¢) NMP + 1 M LiPF4. Magnification,
13,000x

morphology (particles instead of the film layer) is due to the
formation of Li salt solid particles (for example LiF) sur-
rounded by a polymer film [3, 16-18].

Additives
Impedance spectra of LiiNMP+LiPFs+VC (10 wt.%)|Li

and Li|NMP+LiPFs+Vac (10 wt.%)|Li are shown in
Fig. 3. It can be seen that the impedance taken immediately

after cell assembly is higher in comparison to that charac-
teristic of the electrochemically cycled cell (1 charging and
1 discharging cycle). This suggests that electrochemically
prepared SEI is more conductive in comparison to the spon-
taneously formed passivation films. The ohmic resistance
values of the freshly prepared Lielectrolyte systems were
ca. 120 and 300 €2 for VC and Vac as additives, respectively.
SEI resistance (after charging/discharging) is considerably
lower (ca. 80 €2 for VC and ca. 50 2 for Vac). In contrast to
such a behaviour, in some cases, the electrochemical charging/
discharging led to an increase in the total system impedance.
The LiINMP+LiPF¢+ES (10 wt.%)|Li and Lil]NMP+
LiPF¢+ES (10 wt.%)|Li systems may serve as examples.
Here, the ohmic resistance increased to 220 €2 (PC) or even
300 Q (ES) (Fig. 4). All impedance spectra consist of a flat
‘semicircle’, usually followed by a short linear part at a low
frequency region. The high and medium frequency part may
be approximated by a semi-ellipse rather than the semi-circle,
as its major radius (the real axis R) does not equal the minor
radius (the imaginary axis—iX). Typically, the value
(expressed in ohms) of the major radius is higher than the
corresponding value of the minor radius (R*>(iX)?). This may
suggest that the semi-elipse is a superposition of two semi-
circles, representing two RC elements in a series, due to the
SEI formation and a charge transfer process (Fig. 5). The
frequency range of the linear-part is relatively narrow and
the slope is much below 45°. The linear, low-frequency part,
obtained for the reduction of Li" on the metal-lithium anode is
different from that characteristic of graphite anodes, where the
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Fig. 3 Impedance spectra of LiNMP + LiPFg + VC (10 wt.%)|Li and
LiINMP + LiPFg4 + Vac (10 wt.%)|Li cells taken immediately after cell
assembling (A) or after its galvanostatic charging/discharging (o).
Current, 1 mA cm ™2, charging/discharging time, 45 min
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Fig. 4 Impedance spectra of LiiNMP + LiPF¢ + PC(10 wt.%)|Li and
LiNMP + LiPF¢ + ES(10 wt.%)|Li cells taken immediately after cell
assembling (A) or after its galvanostatic charging/discharging (o).
Current, I mA cm™, charging/discharging time, 45 min

Warburg impedance is predominant due to lithium diffusion in
solid graphite [19]. This may suggest that low-frequency
linear parts of impedance spectra shown in Figs. 1, 3, 4 and
8 cannot be described by the Warburg element Zy,;, but rather
by an element Z (without ascribing any physical meaning).
However, commercial software packages used for impedance
data deconvolution generally contain the Zy, element for the
description of the low frequency region. Due to the fact that
the low frequency part of impedance plots measured for the
Li-metal[Li" systems does not exhibit a Warburg-like nature,
two attempts for experimental plot deconvolution were made.
First, the data measured in the whole frequency region were
analysed with Z=Zy. In the second attempt, both the low
frequency region data (the linear part of spectra) and the Z
element in the equivalent circuit were excluded from the
fitting procedure. Both attempts led to very similar Rgg; and
R values. In addition, standard deviations of calculated and
experimental impedances were comparable. Total impedances
(Imp), measured at a frequency of 0.1 Hz, before and after
galvanostatic charging/discharging of LiNMP+LiPF+addi-
tive (10 wt.%)|Li systems, for 15 additives studied, are

Cct
Ret

Fig. 5 An equivalent circuit representing the Li/electrolyte system

CSEI

——1
Rel 4 Rsei
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summarised in Table 1. Values of SEI ohmic resistance Rggy
and charge transfer resistance R, obtained from the deconvo-
lution procedure, are also shown in Table 1. Total impedance
(Imp) measured at a low frequency of 0.1 Hz immediately
after the Lilelectrolyte|Li cell assembling, is typically of the
order of 200-300 €. In the case of the VC containing electro-
lyte, its value is lower (120 €2) while electrolytes based on EC
and Vac+VC additives show considerably higher impedance
(ca. 600 ©2). After galvanostatic charging/discharging, the total
impedance decreases (VC, EC, PC, y-BL, TPhPh, PhlsCy,
Vac, Vac+VC) or increases (DEC, DMC, VEC, DMSO, ES,
MCin, styrene). The electrochemical SEI formation led to the
lowest total impedance in the case of VC (91 ) and Vac
(53 Q). On the other hand, in the case of styrene as the
additive, the electrochemical treatment resulted in impedance
increasing up to 613 € (from an initial value of 239 ). A
similar decrease of the Rsg;+ R ohmic resistance drop after
electrochemical charging/discharging (AR=(Rsg1+Re)after—
(RsertRevefore) for cells with electrolytes containing the
same additives (except PC) was observed (Table 1). Negative
Almp or AR values suggest a replacement of the less conduc-
tive passivation layer by electrochemically formed SEI. Fig-
ures 6 and 7 show examples of SEM images of the lithium
layer after electrochemical SEI formation from electrolytes
(NMP+LiPFg) containing additives reducing (VC and Vac,
Fig. 6) or increasing (PC and ES , Fig. 7) ohmic resistance.
While the metallic lithium in the NMP+LiPFg electrolyte is
covered with spherical particles (Fig. 2c), the SEI structure
(formed electrochemically, shown in Figs. 6 and 7) is differ-
ent. In the case of VC as the additive, the lithium surface is
covered with smooth and uniform regions, separated by
cracks, of ca. 1-2 um in dimension, one order of magnitude
higher in comparison to that characteristic of spherical par-
ticles formed without VC. On the other hand, the morphology
of'the SEI structure formed in the presence of Vac was a foam-
like, organised in conglomerates of a comparable dimension
(1-2 um). A similar morphology may be observed in the case
of PC and ES as additives. Ohmic resistance in the case of PC
as the additive increases after galvanostatic charging/discharg-
ing (AR>0), but the corresponding total impedance change is
negative (Almp<0). In all the other cases negative AR corre-
sponds to negative Almp values. While the electrochemical
pre-treatment of the Lilelectrolyte system resulted always in
the formation of the more uniform morphology, the
corresponding impedance increased or decreased. In general,
electrochemical SEI formation results in a morphology
change from spherical (0.2 pum) into a more uniform system
(1-2 pum). This effect was observed before for the graphite
[17, 18] and silicone [16] anodes. The passivation layer
formed in a classical LiPFg¢ solution in EC+DMC electrolyte
without any additive was non-homogeneous and embedded
with spherical particles, which were assumed to be LiF crys-
tals. SEM images of the SEI layer formed on the graphite and
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Table 1 Total LiNMP + LiPF¢ + additive (10 wt.%)|Li cell impedance
(Imp), together with corresponding resistances of the SEI layer (Rsgr)
and charge transfer process (R.), measured before and after its

electrochemical formation (galvanostatic charging/discharging) (lithi-
um electrodes surface area, 1 cm?)

Additives Before charge/discharge [Q] After charge/discharge [Q] Difference [Q]
Rsgr Ret Imp Rsgr Ret Imp AR? AIme
- 41 149 250 27 363 430 200 180
10 % VC 35 53 123 24 47 91 =17 =32
10 % DEC 46 83 171 48 160 225 79 54
10 % DMC 44 136 188 100 240 379 160 191
10 % EC 129 275 569 68 235 326 —-101 —243
10 % PC 46 118 245 48 161 217 45 -28
10 % VEC 30 152 271 25 366 411 209 140
10 % y-BL 29 152 287 10 126 147 —45 —-140
10 % DMSO 23 146 246 39 243 280 113 34
10 % ES 39 143 263 63 214 305 95 42
10 % TPhPh 80 157 253 32 137 185 —68 —68
10 % PhIsCy 79 113 253 56 77 170 -59 —83
10 % MCin 26 139 241 39 367 310 241 69
10 % Vac 26 188 273 7 32 53 -175 -220
5 % Vac +5 % VC 166 225 671 93 183 310 —-115 =361
10 % styrene 22 80 239 111 350 613 359 374

YAR =3 Rafier — 3, Ruefore (difference in totalresistance, measured before and after electrochemical polarization)

> Almp = Imp, e, — IMPyegore (difference of impedance at 0.1Hz, measured before and after electrochemical polarization)

Imp is total system impedance

silicone in electrolytes containing VC showed rather a smooth
and uniform morphology [16—18]. Generally, the microscopic
techniques (SEM) show changes in the surface morphology,
but do not provide information on the layer impedance. In the
case of all additives tested, the spherical-like particles were
transformed (during galvanostatic charging/discharging) into
much more uniform structures. However, the ohmic resistance
or total system impedance may increase or decrease. There-
fore, the resistance/impedance decrease may serve as the
criterion of the anode (lithium) surface improvement from
the point of view of its ability to conduct Li" cations through
the SEI layer before the charge transfer reaction. The efficien-
cy of additives, from the point of view of reducing metallic-
lithium resistance (AR), suggested by EIS analysis is the
following: Vac>Vac+VC>EC>TPhPh>PhIsCy>vy-BL>
VC. The other compounds did not show any improvement
(decrease) of the Li|( LiPF4 in NMP) system resistance (im-
pedance). This is difficult to compare these results with liter-
ature data due to the variety of solvents, salts and
electrochemical conditions applied. In addition, there are very
few works testing metallic-lithium [20-22], while in the case
of the graphite anode, there are numerous studies. In the latter
case attention is focused on charging/discharging efficiency
[23-29], SEM observations of the graphite surface [8, 14,
23-25, 27, 29-31] and EIS analysis [23, 24, 29, 30, 32-35].

In addition, in some papers, only the LiCy anode was studied
[11, 23-25, 27-30], while in others, the complete cell was
tested [13, 36—41]. The additives improving Li and LiCg
performance were usually tested in electrolytes based on
cyclic carbonates or carbonate mixtures, exhibiting SEI form-
ing properties by themselves. However, in the case of ionic
liquids as electrolytes, additives seem to be necessary for the
functioning of anodes or the Li-ion cell [9-12, 24-28, 30, 39,
42-44]. Among compounds tested, VC seems to be the most
popular and effective additive.

Impedance changes with time

Independently of the additive used, ohmic resistance of the
SEI layer increases with time (Fig. 8). Evolution of the Li
NMP+LiPF¢+VC(10 wt.%)|Li cell impedance, measured
for the system without electrochemical SEI formation can
be seen on Fig. 8a. The ohmic resistance measured imme-
diately after the cell assembling was ca. 120 €2 and the
corresponding reactance was ca. 30 2. During cell storage,
the total impedance increased with time by one order of
magnitude; ohmic resistance to ca. 2 k{2 and reactance to ca.
600 € (after 12 days). In the case of the same cell with the
SEI layer formed electrochemically, the impedance evolu-
tion was considerably smaller (Fig. 8b): ohmic resistance
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Fig. 6 SEM images of lithium metal surface after its electrochemical
charging/discharging in electrolytes containing additives: NMP + 1 M
LiPF¢ + additive(10 wt.%); (a) VC, (b) Vac. Magnification, 13,000%

increased to ca. 400 2 and reactance to ca. 130 2 (after
13 days). This indicates that the electrochemical formation
of SEI protects the Lilelectrolyte system against its aging
(demonstrated as the total impedance increase).

Conclusions

1. Solutions of three salts (LiBF,, LiNTf,, LiPFs) in NMP
(not forming SEI layer), selected arbitrarily as a reference
solvent, were investigated by EIS and SEM techniques.
The lithium surface in contact with the LiPF4 in NMP
electrolyte was covered with small particles (of ca. 0.2 um
in radius).

2. The Li|(LiPFs in NMP+additive)|Li impedance taken
immediately after cell assembling and after galvano-
static charging/discharging showed differences in ohmic
resistance and total impedance. The presence of the
following additives: Vac, Vac+VC, EC, TPhPh, PhIsCy,
v-BL, VC resulted in a decrease of Li|electrolyte resis-
tance. The other tested compounds (DEC, DMC, PC,
EC, DMSO, ES, MCin, styrene) did not show any
reduction of the resistance (impedance).

@ Springer

Fig. 7 SEM images of lithium metal surface after its electrochemical
charging/discharging in electrolytes containing additives: NMP + 1 M
LiPFg + additive(10 wt.%); (a) PC, (b) ES. Magnification, 13,000x
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Fig. 8 Impedance evolution of the LiNMP + LiPFg + VC (10 wt.%)|
Li cell as a function of storage time: (a) Li without SEI (b) Li protected
by SEI formed electrochemically. The system was kept under open
circuit conditions
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